

mandrake’s documentation

[image: mandrake (stochastic cluster embedding with genetic distances)]
mandrake is a tool for creating visualisations of pathogen populations from
their genome data. The visualisation produces are optimised to produce clusters of similar sequences,
represented in a two dimensional embedding.

You may wish to use this tool to:

	Get a quick look at the structure of your population, and identify possible clusters.

	See if these clusters match with known labels.

	Determine whether supervised learning is likely to work on this input data.

	Make pretty pictures and animations.

mandrake is primarily a visualisation tool. To determine clusters robustly, we
would recommend a model-based method such as fastbaps [https://github.com/gtonkinhill/fastbaps]
or poppunk [https://github.com/johnlees/PopPUNK].

To understand local embeddings better, we would recommend the following
excellent guide: https://distill.pub/2016/misread-tsne/.

It can take as input:

	Assembly or read data (using sketchlib [https://github.com/johnlees/pp-sketchlib]).

	A multiple sequence alignment.

	A gene presence/absence matrix.

Runs the following steps:

	Distance calculation, and sparsification to \(k\) nearest neighbours, or using a threshold.

	Conversion of distances to conditional probabilities at the specified perplexity.

	A modified version of stochastic cluster embedding [https://arxiv.org/abs/2108.08003].

	HDBSCAN on the embedding, or labelling with provided categories.

	Plots of the output.

Producing the following output:

	A numpy version of the sparse matrix, for reuse.

	A text version of the output embedding.

	An interactive HTML file with the embedding, and hover labels.

	A static version of this embedding.

	A hexbin plot to show density of the embedding (which is usually overplotted).

	(optionally) A video of the embedding process as the algorithm runs.

mandrake is very fast, and can be used on millions of input samples.

Contents:

	mandrake’s documentation

	Installation

	Examples

	SCE parameters

	Input options

	Plots

	Web app

	Creating animations

	Parallelisation

	Citations

	Index

	Search Page

Installation

These instructions install a python command line interface to mandrake. If you
are not comfortable with using the terminal, or just want to have a quick look,
try our web version [https://gtonkinhill.github.io/mandrake-web/]
(and see documenation on Web app).

Installing with conda (recommended)

If you do not have conda you can install it through
miniconda [https://conda.io/miniconda.html] and then add the necessary
channels:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

Then run:

conda install mandrake

If you are having conflict issues with conda, our advice would be:

	Remove and reinstall miniconda.

	Never install anything in the base environment

	Create a new environment for mandrake with conda create -n mandrake_env mandrake

conda-forge also has some helpful tips: https://conda-forge.org/docs/user/tipsandtricks.html

Installing manually

You will need to install the dependencies, which are listed in environment.yml.
We would still recommend using conda to do this:

conda create -n mandrake_env python
conda env update -n mandrake_env --file environment.yml
conda activate mandrake_env

You can then install by running:

python setup.py install

If you have the CUDA toolkit installed and nvcc on your path, this will also
compile the GPU code:

-- CUDA found, compiling both GPU and CPU code

By default the code will be built for CUDA SM versions 70 (V100), 75 (20xx series), 80 (A100) and 86 (30xx series).
If you need more help on getting the GPU code to work, please see the page
in the pp-sketchlib docs [https://poppunk.readthedocs.io/en/latest/gpu.html], which
uses the same build procedure.

Developer notes

Install the debug build (which can be stepped through with gdb and cuda-gdb)
by running:

python setup.py install --debug

To run:

cuda-gdb python
set args mandrake-runner.py <args>
r

To run without installing, run:

python setup.py build

and add the following lines to the top of each python module file:

import os, sys
sys.path.insert(0, os.path.dirname(__file__) + '/../build/lib.macosx-10.9-x86_64-3.9')
sys.path.insert(0, os.path.dirname(__file__) + '/../build/lib.linux-x86_64-3.9')

To change the compiler used, edit the following part of setup.py:

cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir,
 '-DPYTHON_EXECUTABLE=' + sys.executable,
 '-DCMAKE_C_COMPILER=gcc-10',
 '-DCMAKE_CXX_COMPILER=g++-10',
 '-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON']

To profile the GPU code, uncomment the lines under ‘Set these to profile’ in
CMakeLists.txt (there are three of these, two at the top, one in the CUDA section)
and reinstall. Run nsight-systems with:

nsys profile -o sce_<hash> -c cudaProfilerApi --trace cuda,osrt,openmp mandrake <args>

nsight-compute with:

ncu -c 10 -o sce_<hash> --set full --target-processes all mandrake <args>

Examples

Running mandrake on a multiple sequence alignment:

mandrake --alignment sub5k_hiv_refs_prrt_trim.fas --kNN 500 --cpus 4 \
--maxIter 30000000

[image: Embedding of 5k HIV pol sequences (perplexity 15)]

Embedding of 5k HIV pol sequences (perplexity 15)

Re-running at a different perplexities using these distances:

mandrake --output perplexity50 --distances mandrake.npz \
--perplexity 50 --cpus 4 --maxIter 30000000
mandrake --output perplexity5 --distances mandrake.npz \
--perplexity 5 --cpus 4 --maxIter 30000000

[image: Embedding of 5k HIV pol sequences (perplexity 50)]

Embedding of 5k HIV pol sequences (perplexity 50)

[image: Embedding of 5k HIV pol sequences (perplexity 5)]

Embedding of 5k HIV pol sequences (perplexity 5)

Running mandrake on a sketch database, and producing an animation:

mandrake --sketches mass_sketchlib.h5 --kNN 500 --cpus 4 \
--maxIter 1000000 --animate

[image: Embedding of 616 S. pneumoniae genome core distances]

Embedding of 616 S. pneumoniae genome core distances

Running mandrake on gene presence/absence matrix from panaroo [https://gtonkinhill.github.io/panaroo/#/]:

mandrake --accessory gene_presence_absence.Rtab --kNN 50 --cpus 16 \
--perplexity 15 --bInit 0 --maxIter 1000000000

[image: Embedding of ~20k S. pneumoniae accessory genome distances]

Embedding of ~20k S. pneumoniae accessory genome distances

Running mandrake on a very large multiple sequence alignment:

mandrake --cpus 60 \
--alignment SC2.fasta \
--output sc2million \
--kNN 50 --perplexity 15 --bInit 0 --maxIter 10000000000

[image: Embedding of ~1M SARS-CoV-2 genomes]

Embedding of ~1M SARS-CoV-2 genomes

Re-running mandrake using a GPU:

mandrake --cpus 60 \
--distances SC2.fasta \
--output sc2million.npz \
--perplexity 50 --no-clustering\
--n-workers 94976 --maxIter 1000000000000 --use-gpu \
--animate --labels sc2million_pangolin.txt --no-html-labels

SCE parameters

The options for the SCE algorithm are explained below, other options are
explained in Input options, Creating animations and Parallelisation.

The progress bar shows the percentage complete, the current learning rate \(\eta\),
the divergence \(Eq\) (and clash rate, see Parallelisation).:

Optimizing Progress: 99.9%, eta=0.0010, Eq=0.0547636151, clashes=0.1%
Optimizing done in 20s

The algorithm should be run until \(Eq\) stabilises.

SCE options:

--perplexity PERPLEXITY
 Perplexity for distance to similarity conversion [default = 15]
--no-preprocessing Turn off entropy pre-processing of distances
--weight-file WEIGHT_FILE
 Weights for samples
--maxIter MAXITER Maximum SCE iterations [default = 100000]
--nRepuSamp NREPUSAMP
 Number of neighbours for calculating repulsion (1 or 5) [default = 5]
--eta0 ETA0 Learning rate [default = 1]
--bInit BINIT 1 for over-exaggeration in early stage [default = 0]
--no-clustering Turn off HDBSCAN clustering after SCE

	--perplexity roughly sets the balance between global and local structure, smaller
values making fewer neighbours matter, and emphasising local structure. Typical
values are between 5 and 50, but making plots at multiple values is often useful.

	--no-preprocessing uses raw similarities as input, rather than a probability
distribtion using a desired perplexity. Do not use this option unless you are having
issues setting the perplexity.

	--weight-file allows you to give different samples different weights in
being picked to attract or repel. The default is to equally weight samples, but
you could for example weight by cluster size or its inverse. This requires a tab-separated
file with no header, the first column with sample names, the second column with their weights.

	--maxIter sets how long the algorithm will run for. Larger datasets will need more
iterations. We recommend running until \(Eq\) stabilises.

	--nRepuSamp is the number of neighbours used for calculating the repulsion at
each iteration. This can be one or five.

	--eta0 sets the scale of the learning rate. A higher value will move points
around more at each iteration.

	--bInit turns on over-exaggeration, which sets the stength of attraction four times
higher in the first 10% of the iterations.

	--no-clustering turns off the HDBSCAN clustering if you don’t want spatial clustering
run on the embedding (which may stall when no structure has been found). This is
implied if --labels have been provided.

Input options

Any of the following modes also accept --labels, which give the categories
to colours points by in the output plots. This should be a tab-separated file
with no header, the first column containing sample names, and the second column
containing the labels for each sample.

There are two additional parameters for the distances:

--threshold THRESHOLD
 Maximum distance to consider [default = None]
--kNN KNN Number of k nearest neighbours to keep when sparsifying the distance
 matrix.

Rather than using a full (dense) matrix of all pairwise distances, mandrake uses
a sparse matrix, ignoring large distances. This uses significantly less memory without
affecting results.

--kNN sets the number of distances to keep for each sample, which will be the
\(k\) closest. Set \(k\) to a number smaller than the number of samples.
Memory use grows linearly with \(k\). Setting \(k\) too small will miss global
structure in the data.

--threshold instead picks a maximum distance that is considered meaningful, and
larger distances will be removed from the input.

Multiple sequence alignment

Provide a multi-fasta alignment with --alignment. Distances will be calculated
using a modified form of the pairsnp [https://github.com/gtonkinhill/pairsnp] algorithm,
and sparsified based on -kNN or --threshold.

If you are trying to align large numbers of sequences (e.g. SARS-CoV-2), the reference-guided
mode of MAFFT [https://mafft.cbrc.jp/alignment/software/] may be helpful:

mafft --6merpair --thread -1 --keeplength --addfragments filtered_SC2.fasta \
nCoV-2019.reference.fasta > MA_filt_SC2.fasta

Sketch database (assemblies or reads)

Provide a pp-sketchlib [https://github.com/johnlees/pp-sketchlib] database
with --sketches, to calculate core and accessory distances
between the sketches. Core distances are used by default, but add --use-accessory to
alter this behaviour.

This should be a HDF5 file with suffix .h5 produced by sketchlib, for example
by a command such as:

sketchlib sketch -l sample_rfile.txt -o sketch_db --cpus 16

Gene presence/absence

Pan-genome programs such as roary [https://sanger-pathogens.github.io/Roary/] and
panaroo [https://gtonkinhill.github.io/panaroo/#/] output a gene_presence_absence.Rtab
file, which can be used with --accessory to calculate accessory distances (Hamming distances).

unitig counting programs such as unitig-caller [https://github.com/johnlees/unitig-caller]
also output this file format, though the interpretation of the distances is slightly different
it can also be used as input.

Precalculated distances

After calculating distances, mandrake will save these as <output_prefix>.npz. These
can be used as input without the need to compute them again with --distances,
which is useful when you wish to run the embedding algorithm on the same data with
different parameters.

Plots

This page describes the outputs from mandrake. Along with the plots, mandrake
also outputs the embedding as:

	mandrake.embedding.txt the X-Y coordinates of the embedding as text.

	mandrake.names.txt the sample names of each row in the embedding file.

Should you wish to create your own plots.

Interactive plot

An interactive plot of the embedding is written to mandrake.embedding.html,
which can be viewing in your web browser. This plot can be zoomed and panned,
and sample labels will appear when you hover over them. Use the controls in the
top-right to save your view as a static image. Double-click to zoom out.

[image: Embedding viewed in the browser]
For large datasets this file may become very large due to the labels, in which
case the static images might be preferred.

Static image

This is a non-interactive version of the embedding written to mandrake.embedding_static.png.
Point size will vary depending
on number of samples \(N\):

	Small dataset, large points \(N < 1000\).

	Medium dataset, medium points \(1000 < N < 10000\).

	Large dataset, small points \(N > 10000\).

Points will be coloured by their labels if provided, or otherwise their HDBSCAN
cluster (total number noted in the title). Colours are chosen at random, but consistently
between runs:

[image: Static view of the embedding]

Changing colours in the plots

The colours for each label are chosen at (pseudo)random, so while they will be
consistent between runs, they may also be fairly putrescent. To try a new
set of colours, give a different --seed. This should be an integer, and
setting --seed 1 will be the default colours.

Density plot

Due to the nature of the SCE algorithm, many points are likely to be overploted.
This can be investiaged in the HTML plot by zooming in. For larger datasets, a useful
companion to the static image is the hexbin plot mandrake.embedding_density.pdf, which shows the number of points
in each region of the plot, divided into small tesselating hexagons:

[image: hexbin density view of the embedding]

Microreact output

You can also view your clusters in microreact [https://microreact.org/upload],
which will also let you combine the embedding visualisation with a tree, interactively.

Upload the mandrake.embedding.dot file. If you ran HDBSCAN clustering there
will also be mandrake.hdbscan_clusters.csv file you can include to colour the
points with.

If you used your own --labels, these can be used, as long as they
are formatted as a Microreact-compliant .csv file:

	comma separated

	with a header

	sample names have column header ‘id’

	append __autocolour to column headers you wish to colour points by

Web app

You can find a version of mandrake at https://gtonkinhill.github.io/mandrake-web/

This is a static web app which uses a WebAssembly version of mandrake to run
in your browser. This means no sequence data is transmitted across the network
and the analysis is run entirely locally in your browser, which:

	Means data does not have to be uploaded, which can take a while.

	We see and store no sequence, so your data never leaves your machine, or is
ever even read by us at all.

	We don’t have to maintain a server (which is good for us), which is typically
more reliable (which good for you).

The use of this is hopefully fairly self-explanatory:

	Choose an input sequence file.

	Select the type of distance based on the type of the input file
(SNP distances, accessory or sketch; see Input options).

	(optionally) set labels to colour the output with.

	(optionally) change the SCE algorithm parameters.

Performance

The web app is suitable for up to a few thousand sequences. If you are analysing
more sequences than that you should use the command line tool.

The web app can only use a single CPU core. It is usually faster in ‘native’ browers,
Safari on OS X and Edge on Windows.

Creating animations

You can also create an animation of the embedding process as it runs simply
by adding the --animate flag. This works with both the CPU and GPU versions
of the algorithm, and will output a video file mandrake.embedding_animation.mp4:

[image: Animation of an embedding]
The top panel shows the embedding, the bottom panels shows the iteration and \(Eq\)
at the iteration. The learning rate always decreases linearly, so it is not plotted.

You will see two further progress bars after plotting:

Creating animation
100%|███| 400/400 [00:11<00:00, 35.73frames/s]
Saving frame 400 of 400

The first is saving static images of each frame, the second is encoding these into
a video using ffmpeg.

You can also add sound by additing the --animate-sound flag. This will
add a soundtrack to the video which is based on how the animation changes at
each frame (see below).

Details

	The colours are the ‘final’ colours of HDBSCAN run on the embedding result,
or the provided labels. Black points are noise points.

	The dimensions are rescaled to have unit standard deviation in each direction
at every frame.

	Animations have 400 frames played at 20fps, resulting in a 20s animation.

	Resolution is 1920x2560px.

	Samples are taken more regularly at the start, when learning is happening at a
greater rate and points move more, and less frequently at the end, when learning is
slow and points move less. Specifically, samples are taken at a rate such that the
total amount of learning is divided equally, which is proportional to \(1 - \sqrt{1-x}\).

	Sound is created by adding a note with frequency proportional to the maximum
change of any point between each frame. The x-axis gives the left channel, the
y-axis gives the right channel.

Parallelisation

To increase the speed of mandrake, you can alter the following options:

--n-workers N_WORKERS
 Number of workers to use, sets max parallelism [default = 1]
--cpus CPUS Number of CPUs to use [default = 1]
--use-gpu Run SCE on the GPU. If this fails, the CPU will be used [default =
 False]
--device-id DEVICE_ID
 GPU ID to use
--blockSize BLOCKSIZE
 CUDA blockSize [default = 128]

Set the number of cores to use by specifying --cpus. This will set the parallelism
for the SCE (embedding), but also carries through to the distance calculation.

To use a GPU you will need:
- A CUDA enabled GPU available with appropriate drivers.
- A version of the code compiled with CUDA.
- To add the --use-gpu flag.

A GPU will also be used for sketch distances, if pp-sketchlib is also set up
to use GPUs. You can choose a GPU with the --device-id flag, or the CUDA_VISIBLE_DEVICES
environment variable (in which case keep device ID as the default; this is how
some HPCs set the GPU).

The float precision on GPUs can be set with --fp, 32 for single precision,
64 for double precision. On ‘consumer’ GPUs, using --fp 32 will likely be
faster. You can also change the block size for the SCE process with --blockSize (this
should be a multiple of 32, and likely one of 32, 64, 128 or 256). The default is
128, and you probably don’t need to change this unless you are interested in CUDA.

Setting the number of workers

The number of workers --n-workers sets the maximum amount of parallelism
possible. Each worker will randomly pick a sample pair to update the attraction
between, and then --nRepuSamp pairs to update the repulsion between. These
can be run in parallel at each iteration.

If you are running with CPU cores, you probably want to set the number of workers
equal to the number of available cores (this will be done automatically). If you are
running on a GPU you should set at least as many workers as the block size. However,
GPUs become more efficient with more threads, up to about 100k threads. So you want to set
as many workers as possible, ideally up to 100k (and probably an integer multiple of the block size).

However, the more workers running in parallel there are relative to the number
of samples, the more likely two or more workers will try and update the same
sample at the same time. The frequency of these attempted overwrites is shown by
the percentage of clashes in the progress bar.

The CPU code largely avoids multiple synchronous worker updates, but you may find
that speedup decreases as clash rate increases. The GPU code does not correct for clashes
(but does maintain memory validity), instead relying on the stochastic nature of
the algorithm to give a correct result. Speed is likely to decreases with clashes,
but at large values you may find issues with convergence. If the clash rate is
approaching 100%, you should probably decrease the number of workers, even if this
takes you below the optimum for a GPU.

Citations

Mandrake paper (forthcoming):

Lees J, Tonkin-Hill G, Yang Z, Corander J.
Visualising pathogen population structures by embedding millions of genomes
into lower dimensional representations. 2021.

The original SCE preprint:

Yang Z, Chen Y, Sedov D, Kaski S, Corander J. Stochastic Cluster Embedding.
arXiv [cs.LG]. 2021. Available: http://arxiv.org/abs/2108.08003

Original SCE code:

https://github.com/rozyangno/sce

Index

 _images/hiv5k_embedding_15.png
HDBSCAN - estimated number of spatial clusters: 310

20

10

-10

20 -

10 A

Z uolsuswip 305

_10 -

—20 1

SCE dimension 1

_images/hiv5k_embedding_5.png
HDBSCAN - estimated number of spatial clusters: 462

30

20

10

-10

=20

-30

30 -
20 -
10 A
0

T

o

—
|

—20 A
—30 A

Z uolsuswip 305

SCE dimension 1

_images/gps_embedding.jpeg
SCEDIM2

- - =
- -
= X e
g = »
- ¢
o -
»
-
il 3 %
. .
. # £
PO
s

SCEDIM 1

_images/html_view.png
SCE dimension 1

_images/mandragora.png

_images/hiv5k_embedding_50.png
HDBSCAN - estimated number of spatial clusters: 147

-5

-10

-15

15 -

10 A

Z uolsuswip 305

_10 -

_15 -

SCE dimension 1

_images/hiv5k_embedding_density.png
Embedding density

SCE dimension 2

'y 2““‘.“. Y XP
oo s

-30 -20 -10 0 10 20 30
SCE dimension 1

Samples

_images/mandrake.embedding_animation.gif
sssssssssssss

eeeeeeeee

_images/sc2_embedding.jpeg
Sl

oL

0
Zwia 308

0L~

L

20

10

-10

-20

SCEDIM 1

_images/sparc_embedding.png
SCE dimension 2

HDBSCAN - estimated number of spatial clusters: 47

o)
15 4 o
10 A ©
@0
o
0] (o)
o ° Q
5 1 .. o [5)
°8° o .
° o © © 9 o
° o
0 - 0] b o
° © O O ‘ (0]
o ° o
o
5. o)
& °
(0]
6
-10 . ®
o)
~15 - .
/o)
_15 _10 _5 0 5 10 15

SCE dimension 1

nav.xhtml

 Table of Contents

 		
 mandrake’s documentation

 		
 Installation

 		
 Installing with conda (recommended)

 		
 Installing manually

 		
 Developer notes

 		
 Examples

 		
 SCE parameters

 		
 Input options

 		
 Multiple sequence alignment

 		
 Sketch database (assemblies or reads)

 		
 Gene presence/absence

 		
 Precalculated distances

 		
 Plots

 		
 Interactive plot

 		
 Static image

 		
 Changing colours in the plots

 		
 Density plot

 		
 Microreact output

 		
 Web app

 		
 Performance

 		
 Creating animations

 		
 Details

 		
 Parallelisation

 		
 Setting the number of workers

 		
 Citations

_static/file.png

_static/minus.png

_static/plus.png

